5. Corrigés des exercices d'entraînement et de préparation au DS

Exercice 3.A:

1000 équivaut à $n^3 > 1$ 000 qui équivaut à $n > \sqrt[3]{1000}$ qui équivaut à n > 10. Donc à partir du rang n = 11, on a $v_n > 1$ 000.

 \bigcirc Soit A un réel.

If faut montrer qu'il existe un rang N tel que si $n \ge N$, alors $n^3 \in]A$; $+\infty[$, c'est-à-dire $n^3 > A$.

Si A < 0 alors N = 0 convient car pour tout $n \in \mathbb{N}$, $n^3 \ge 0 > A$.

Si $A \ge 0$. L'inégalité $n^3 > A$ équivaut à $n > \sqrt[3]{A}$, donc en notant N le plus petit entier naturel strictement supérieur à $\sqrt[3]{A}$, on a : si $n \ge N$, alors $n^3 > A$.

Donc (v_n) diverge vers $+\infty$.

Exercice 3.B:

① À chaque étape, la variable u contient la valeur d'un terme de la suite (u_n) et la variable n contient la valeur de l'indice de ce terme.

Comme le premier terme de la suite (u_n) est $u_0 = 1$, on initialise la variable u à 1 et la variable n à 0.

À l'aide de la boucle « **Tant que** » dont la condition d'entrée est $u \le A$, on répète le calcul des termes de la suite jusqu'à en trouver un strictement supérieur à A.

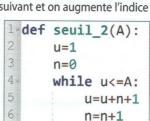
suite jusqu'à en trouver un strictement supérieur à A. À chaque passage dans la boucle, on calcule le terme suivant et on augmente l'indice

de 1 avec les instructions $u \leftarrow u + n + 1$ et

 $n \leftarrow n + 1$.

L'indice du premier terme qui est strictement supérieur à A est contenu dans la variable n après l'exécution de l'algorithme.

2 Avec A = 200, on obtient n = 20, puis avec A = 5000, on obtient n = 100.



return n

7

 $u \leftarrow 1$

 $n \leftarrow 0$

Tant que $u \leq A$

Fin Tant que

 $n \leftarrow n+1$

 $u \leftarrow u + n + 1$

Exercice 3.C:

- $\lim_{n \to +\infty} n^2 = +\infty, \lim_{n \to +\infty} n = +\infty \text{ et } \lim_{n \to +\infty} 5 = 5 \text{ donc } \lim_{n \to +\infty} 5n = +\infty. \lim_{n \to +\infty} 3 = 3 \text{ donc } \lim_{n \to +\infty} (5n+3) = +\infty. \text{ D'après la règle sur la limite d'une somme : } \lim_{n \to +\infty} u_n = +\infty.$
- $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0 \text{ et } \lim_{n \to +\infty} 2 = 2 \text{ donc } \lim_{n \to +\infty} \left(\frac{1}{\sqrt{n}} + 2 \right) = 2. \lim_{n \to +\infty} n^3 = +\infty \text{ donc } \lim_{n \to +\infty} -n^3 = -\infty. \text{ Et } \lim_{n \to +\infty} 1 = 1 \text{ donc } \lim_{n \to +\infty} \left(-n^3 + 1 \right) = -\infty.$ D'après la règle sur la limite d'un produit : $\lim_{n \to +\infty} v_n = -\infty.$
- $\lim_{\substack{n\to +\infty\\ n\to +\infty}} 2=2 \text{ et } \lim_{\substack{n\to +\infty\\ n\to +\infty}} u_n=+\infty \text{, donc d'après la règle sur la limite d'un quotient :}$

Exercice 3.D:

- $\begin{aligned} & \text{prépondérant}: u_n = n^2 \bigg(\frac{3n}{n^2} - 1\bigg). \text{ On a } \frac{3n}{n^2} = \frac{3}{n}, \text{ d'où } u_n = n^2 \bigg(\frac{3}{n} - 1\bigg). \lim_{n \to +\infty} n^2 = +\infty \\ & \text{et } \lim_{n \to +\infty} \bigg(\frac{3}{n} - 1\bigg) = -1, \text{ donc d'après la règle sur la limite d'un produit}: \lim_{n \to +\infty} u_n = -\infty. \end{aligned}$
- $\lim_{n \to +\infty} (n^3 + 2n) = +\infty \text{ et } \lim_{n \to +\infty} (5n^3 + 1) = +\infty \text{ : on est en présence de la forme}$ indéterminée « $\frac{\infty}{\infty}$ ». On factorise le numérateur et le dénominateur par n^3 pour $\it n$ entier naturel non nul car c'est le terme prépondérant au numérateur et au

$$\text{dénominateur}: v_n = \frac{n^3 \left(1 + \frac{2n}{n^3}\right)}{n^3 \left(5 + \frac{1}{n^3}\right)} = \frac{1 + \frac{2}{n^2}}{5 + \frac{1}{n^3}}. \lim_{n \to +\infty} \left(1 + \frac{2}{n^2}\right) = 1 \text{ et } \lim_{n \to +\infty} \left(5 + \frac{1}{n^3}\right) = 5,$$

- donc d'après la règle sur la limite d'un quotient : $\lim_{n \to +\infty} v_n = \frac{1}{5}$.

 3 $\lim_{n \to +\infty} \frac{1}{n^2} = 0$ et $\lim_{n \to +\infty} \left(1 + 2n^3\right) = +\infty$, on est en présence de la forme indéterminée « $0 \times \infty$ ». Pour tout entier naturel n non nul, on développe : $w_n = \frac{1}{n^2} + \frac{2n^3}{n^2} = \frac{1}{n^2} + 2n$. $\lim_{n \to +\infty} \frac{1}{n^2} = 0$ et $\lim_{n \to +\infty} 2n = +\infty$, donc d'après la règle sur la limite d'une somme, $\lim_{n \to +\infty} w_n = +\infty$.
- $\lim_{n \to +\infty} \frac{2}{n\sqrt{n}} = 0 \text{ et } \lim_{n \to +\infty} \frac{2}{n} + \frac{1}{\sqrt{n}} = 0. \text{ On est en présence de la forme indéterminée}$

$$z_{n} = \frac{\frac{0}{0}}{\frac{2}{n} + \frac{1}{\sqrt{n}}} = \frac{\frac{2}{n\sqrt{n}}}{\frac{2\sqrt{n} + n}{n\sqrt{n}}} = \frac{2}{n\sqrt{n}} \times \frac{n\sqrt{n}}{2\sqrt{n} + n} = \frac{2}{2\sqrt{n} + n}.$$

Or, $\lim_{n\to +\infty} \left(2\sqrt{n} + n\right) = +\infty$, donc d'après la règle sur la limite d'un quotient, $\lim_{n \to +\infty} \frac{2}{2\sqrt{n} + n} = 0. \text{ Donc, } \lim_{n \to +\infty} z_n = 0.$

Exercice 3.E:

- **1** Comme $(-1)^n$ est égal à -1 ou 1 on a : $-1 \le (-1)^n \le 1$. Donc pour tout entier naturel n non nul : $3 \le 4 + (-1)^n \le 5$, en divisant par n^2 qui est strictement positif on conserve l'ordre donc $\frac{3}{n^2} \le \frac{4 + (-1)^n}{n^2} \le \frac{5}{n^2}$. $\lim_{n \to +\infty} \frac{3}{n^2} = 0$ et $\lim_{n \to +\infty} \frac{5}{n^2} = 0$, d'après le théorème des « gendarmes », la suite (u_n) converge vers 0.
- 2 On a pour tout entier naturel n strictement supérieur à 1: $-1 \le -\cos(n) \le 1$, donc $\sqrt{n} 1 \le \sqrt{n} \cos(n) \le \sqrt{n} + 1$. Les trois membres de l'inégalité sont strictement positifs puisque n > 1, donc $\frac{1}{\sqrt{n} + 1} \le \frac{1}{\sqrt{n} \cos(n)} \le \frac{1}{\sqrt{n} 1}$. $\lim_{n \to +\infty} \frac{1}{\sqrt{n} + 1} = 0$, et $\lim_{n \to +\infty} \frac{1}{\sqrt{n} 1} = 0$. Donc, d'après le théorème des « gendarmes », la suite (v_n) converge vers 0.
- 3 Pour tout entier naturel n, on a $(-1)^n \ge -1$ car $(-1)^n$ est égal à -1 ou 1. Donc pour tout entier naturel n, $n^3 + (-1)^n \ge n^3 1$. Or $\lim_{n \to +\infty} n^3 1 = +\infty$, donc par comparaison $\lim_{n \to +\infty} w_n = +\infty$. Donc la suite (w_n) ne converge pas. Elle diverge et sa limite est $+\infty$.

Exercice 3.F:

- 1 Les suites (u_n) , (v_n) et (w_n) sont des suites géométriques.
 - **a.** Pour tout entier naturel n, $u_n = \frac{3}{5^n} = 3 \times \left(\frac{1}{5}\right)^n$. Comme, $-1 < \frac{1}{5} < 1$ on a : $\lim_{n \to +\infty} \left(\frac{1}{5}\right)^n = 0$. Donc $\lim_{n \to +\infty} u_n = 0$. La suite (u_n) converge vers 0.
 - **b.** $\left(\sqrt{3}\right)^n$ est de la forme q^n avec q>1, donc $\lim_{n\to+\infty}\left(\sqrt{3}\right)^n=+\infty$. Et $\lim_{n\to+\infty}-4=-4$.

Donc d'après la règle sur le produit de limites (v_n) diverge vers $-\infty$. c. $(-2)^n$ est de la forme q^n avec q < -1.

Donc (w_n) n'a pas de limite, cette suite diverge.

2 3 > 1 et 5 > 1 donc $\lim_{n \to +\infty} 3^n = +\infty$ et $\lim_{n \to +\infty} 5^n = +\infty$.

On est en présence de la forme indéterminée « $\infty - \infty$ ».

On peut écrire pour tout entier naturel n, $u_n = 5^n \left[\left(\frac{3}{5} \right)^n - 1 \right]$.

Or
$$-1 < \frac{3}{5} < 1$$
 donc $\lim_{n \to +\infty} \left(\frac{3}{5}\right)^n = 0$. On en déduit : $\lim_{n \to +\infty} \left[\left(\frac{3}{5}\right)^n - 1\right] = -1$. De plus

 $\lim_{n\to +\infty} 5^n = +\infty, \text{d'où, d'après la règle sur le produit de limites, } \lim_{n\to +\infty} u_n = -\infty.$

Exercice 3.G:

- $u_n \left(-\frac{5}{4} \right) = \frac{4(4n+1) + 5(1-5n)}{4(1-5n)} = \frac{-9n+9}{4(1-5n)}.$ Pour tout entier naturel n supérieur ou égal à 1 : $-9n + 9 \le 0$ et 4(1 - 5n) < 0. D'où pour tout entier naturel n supérieur ou égal à $1: u_n - \left(-\frac{5}{4}\right) \ge 0$ et donc $u_n \ge -\frac{5}{4}$. Donc (u_n) est minorée par $-\frac{5}{4}$.

 2 Pour tout entier naturel n, on note $P(n): \ll u_n \le 4$ ».
- **Initialisation**: $u_0 = 1$ et $1 \le 4$, donc P(0) est vraie.

Hérédité : on considère un entier naturel n tel que P(n) est vraie, c'est-à-dire tel que $u_n \le 4$. On montre que P(n+1) est vraie, c'est-à-dire que $u_{n+1} \le 4$. On a: $u_n \le 4 \operatorname{donc} \frac{2}{3} u_n \le \frac{2}{3} \times 4 \operatorname{puis} \frac{2}{3} u_n + \frac{4}{3} \le \frac{2}{3} \times 4 + \frac{4}{3}$. Or $\frac{2}{3} \times 4 + \frac{4}{3} = \frac{12}{3} = 4$. Donc on a : $\frac{2}{3}u_n + \frac{4}{3} \le 4$ c'est-à-dire $u_{n+1} \le 4$.

P(n + 1) est donc vraie.

Conclusion: la propriété est vraie au rang 0 et est héréditaire, donc d'après le principe de récurrence, pour tout entier naturel n, P(n) est vraie, c'est-à-dire que l'on a $u_n \le 4$ pour tout entier naturel n.

Exercice 3.H:

1 a. Pour tout entier naturel n, on note P(n): « $u_n \le 7$ ».

Initialisation: $u_0 = 7$ et 1 < 7, donc P(0) est vraie.

 $\mathsf{H\acute{e}r\acute{e}dit\acute{e}}:$ on considère un entier naturel n tel que P(n) est vraie, c'est-à-dire tel que $u_n \le 7$. On montre que P(n+1) est vraie, c'est-à-dire que $u_{n+1} \le 7$.

On a: $u_n \le 7$ donc $\frac{1}{3}u_n \le \frac{1}{3} \times 7$ puis $\frac{1}{3}u_n + \frac{14}{3} \le \frac{1}{3} \times 7 + \frac{14}{3}$. Or $\frac{1}{3} \times 7 + \frac{14}{3} = \frac{21}{3} = 7$.

Donc on a: $\frac{1}{3}u_n + \frac{14}{3} \le 7$ c'est-à-dire $u_{n+1} \le 7$.

P(n + 1) est donc vraie.

Conclusion : la propriété est vraie au rang 0 et est héréditaire, donc d'après le principe de récurrence, pour tout entier naturel n, P(n) est vraie, c'est-à-dire que l'on a $u_n \le 7$ pour tout entier naturel n.

b. Pour tout entier naturel n, $u_{n+1} - u_n = -\frac{2}{3}u_n + \frac{14}{3}$.

Or pour tout entier naturel n, $u_n \le 7$. Donc pour tout entier naturel n, $-\frac{2}{3}u_n \ge -\frac{14}{3}$.

D'où pour tout entier naturel $n_1 - \frac{2}{3}u_n + \frac{14}{3} \ge 0$. Donc pour tout entier naturel n_2 $u_{n+1}-u_n \ge 0.$

Ainsi, la suite (u_n) est croissante.

La suite (u_n) est croissante et majorée, donc d'après le théorème de convergence monotone, (u_n) converge.

Exercice 3.1:

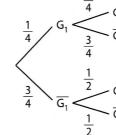
- **10** a. Pour tout entier naturel n supérieur ou égal à 2, soit la propriété P(n): « $0 \le u_n \le 1$ ». **Initialisation :** $u_2 = 1$ et $0 \le 1 \le 1$, donc $0 \le u_2 \le 1$. P(2) est donc vraie. **Hérédité**: on considère un entier naturel n supérieur ou égal à 2 tel que P(n) est
 - vraie, c'est-à-dire tel que $0 \le u_n \le 1$. On montre que P(n+1) est vraie, c'est-à-dire que $0 \le u_{n+1} \le 1$.
 - Pour tout entier naturel *n* supérieur ou égal à $2:1-\frac{1}{n^2}=\frac{n^2-1}{n^2}$.
 - Or pour tout entier naturel n supérieur ou égal à 2 : $n^2 1 > 0$
 - Donc $0(n^2 1) \le u_n(n^2 1) \le 1(n^2 1)$ c'est-à dire $0 \le u_n(n^2 1) \le n^2 1$.
 - Puis pour tout entier naturel n supérieur ou égal à $2: n^2 > 0$. Donc $\frac{0}{n^2} \le u_n \frac{n^2 1}{n^2} \le \frac{n^2 1}{n^2}$.

 - Donc $0 \le u_{n+1} \le 1$. P(n+1) est donc vraie.
 - **Conclusion :** la propriété est vraie pour n = 2 et est héréditaire. Donc d'après le principe de récurrence, P(n) est vraie pour tout entier naturel n supérieur ou égal à 2, c'est-à-dire que $0 \le u_n \le 1$ pour tout entier naturel n supérieur ou égal à 2.
 - **b.** Pour tout entier naturel n supérieur ou égal à 2,
 - $u_{n+1} u_n = u_n \left(1 \frac{1}{n^2} \right) u_n = u_n \left(1 \frac{1}{n^2} 1 \right) = -\frac{u_n}{n^2}.$
 - Or pour tout entier naturel n supérieur ou égal à 2, $0 \le u_n$ donc $u_{n+1} u_n \le 0$. La suite (u_n) est donc décroissante.
- **2** La suite (u_n) est décroissante et minorée par 0. D'après le théorème de convergence monotone cette suite est convergente.
- 3 Pour tout entier naturel $n \ge 2$, soit la propriété P(n) : « $u_n = \frac{n}{2(n-1)}$ ».
 - **Initialisation**: $u_2 = 1$ et $\frac{2}{2(2-1)} = 1$, donc $u_2 = \frac{2}{2(2-1)}$. P(2) est donc vraie.
 - **Hérédité**: on considère un entier naturel n supérieur ou égal à 2 et tel que P(n) est vraie, c'est-à-dire tel que $u_n = \frac{n}{2(n-1)}$. On montre que P(n+1) est vraie, c'est-à-dire que $u_{n+1} = \frac{n+1}{2((n+1)-1)}$.
 - On a: $u_{n+1} = u_n \left(1 \frac{1}{n^2} \right) = \frac{n}{2(n-1)} \times \frac{n^2 1}{n^2} = \frac{1}{2(n-1)} \times \frac{(n-1)(n+1)}{n} = \frac{n+1}{2n}$
 - Donc $u_{n+1} = \frac{n+1}{2(n+1-1)}$. P(n+1) est donc vraie.
 - **Conclusion :** la propriété est vraie pour n = 2 et est héréditaire. Donc d'après le
 - principe de récurrence, P(n) est vraie pour tout entier naturel n supérieur ou égal à 2, c'est-à-dire que $u_n = \frac{n}{2(n-1)}$ pour tout entier naturel n supérieur ou égal à 2.
 - Un calcul direct de la limite aboutit à la forme indéterminée « $\frac{\infty}{\infty}$ ». Pour tout entier
 - naturel n supérieur ou égal à 2, $u_n = \frac{n}{2(n-1)} = \frac{n}{2n-2} = \frac{n}{n(2-\frac{2}{n})} = \frac{1}{2-\frac{2}{n}}$
 - Or $\lim_{n\to+\infty} 2 \frac{2}{n} = 2$. Donc $\lim_{n\to+\infty} u_n = \frac{1}{2}$.

Exercice 3.J:

① On construit un arbre pondéré traduisant la situation. On utilise la formule des probabilités totales avec la partition $(G_1, \overline{G_1})$:

$$\begin{split} p_2 &= P \big(\mathsf{G_2} \big) = P \big(\mathsf{G_1} \cap \mathsf{G_2} \big) + P \Big(\overline{\mathsf{G_1}} \cap \mathsf{G_2} \big) \\ &= P \big(\mathsf{G_1} \big) \times P_{\mathsf{G_1}} \big(\mathsf{G_2} \big) + P \Big(\overline{\mathsf{G_1}} \big) \times P_{\overline{\mathsf{G_1}}} \big(\mathsf{G_2} \big) \\ &= \frac{1}{4} \times \frac{1}{4} + \frac{3}{4} \times \frac{1}{2} = \frac{7}{16}. \end{split}$$



De même avec la partition $(G_n, \overline{G_n})$:

$$\begin{split} p_{n+1} &= P \big(\mathsf{G}_{n+1} \big) = P \big(\mathsf{G}_n \, \cap \, \mathsf{G}_{n+1} \big) + \ P \big(\overline{\mathsf{G}_n} \, \cap \, \mathsf{G}_{n+1} \big) \\ &= P \big(\mathsf{G}_n \big) \times P_{\mathsf{G}_n} \big(\mathsf{G}_{n+1} \big) + P \big(\overline{\mathsf{G}_n} \big) \times P_{\overline{\mathsf{G}_n}} \big(\mathsf{G}_{n+1} \big) \\ \mathsf{donc} \ p_{n+1} &= p_n \times \frac{1}{4} + \big(1 - p_n \big) \times \frac{1}{2} = -\frac{1}{4} p_n + \frac{1}{2} \end{split}$$

2 suite_C10 (10) renvoie: [0.25, 0.4375, 0.390625, 0.4023437, 0.3994140625,0.4001464, 0.3999633, 0.4000091,0.3999977, 0.4000005].

On conjecture donc que
$$p_n$$
 converge vers 0,4.

2 **a.** Pour tout entier naturel n non nul, $u_{n+1} = p_{n+1} - \frac{2}{5} = -\frac{1}{4}p_n + \frac{1}{2} - \frac{2}{5} = -\frac{1}{4}p_n + \frac{1}{10} = -\frac{1}{4}\left(p_n - \frac{2}{5}\right) = -\frac{1}{4}u_n$.

 (u_n) est géométrique de raison $-\frac{1}{4}$.

b. Pour tout entier naturel *n* non nul, $u_n = u_1 \times \left(-\frac{1}{4}\right)^{n-1}$.

Or
$$u_1 = p_1 - \frac{2}{5} = \frac{1}{4} - \frac{2}{5} = -\frac{3}{20}$$
. Donc $u_n = -\frac{3}{20} \times \left(-\frac{1}{4}\right)^{n-1}$.

D'où pour tout entier naturel n non nul, $p_n = u_n + \frac{2}{5} = \frac{2}{5} - \frac{3}{20} \left(-\frac{1}{4}\right)^{n-1}$.

c. On a
$$-\frac{1}{4} \in]-1;1[$$
 donc $\lim_{n \to \infty} \left(-\frac{1}{4}\right)^{n-1} = 0.$

D'où
$$\lim_{n\to\infty} p_n = \lim_{n\to\infty} \frac{2}{5} - \frac{3}{20} \left(-\frac{1}{4}\right)^{n-1} = \frac{2}{5} = 0.4$$

La conjecture faite en 2. est donc démontrée. La probabilité de victoire du joueur tend vers 0,4 au fur et à mesure que les parties s'enchaînent.